Reducing false-positive recalls by adding temporal changes information to an Al system for breast cancer detection

Serena Pacilè, Ph.D., Julien Guillaumin, MSc., Pierre Fillard, Ph.D.

pfillard@therapixel.com @PierreFillard

Introduction & Research Question

• **Temporal change = major biomarker** for the presence of **malignancy**:

- No temporal change: low suspicion of malignancy
- Fast temporal change: **high suspicion** of malignancy:

• Specificity of AI algorithms remains a concern (higher FP rate than radiologists)¹

• Can AI leverage this temporal information and gain in specificity?

¹Freeman et al. Use of artificial intelligence for image analysis in breast cancer screening programmes: systematic review of test accuracy BMJ 2021; 374 :n1872 doi:10.1136/bmj.n1872

Material and Methods: Data Selection

Material and Methods: AI System¹

- **S&E** (Squeeze & Excite²) blocks: **Reduce** CNN response in regions with **stable findings**.
- **Misalignment** of prior correct by **non-linear registration**.

¹Therapixel MammoScreen v1.2 (no prior) / MammoScreen v1.3 (prior) ²Hu et al., Squeeze-and-Excitation Networks. Computer Vision and Pattern Recognition, 2018.

Results

- Sensitivity @ 100% PPV: +10.2% (CI: 4.4% 15%)
 - Al w/o prior: 12.5% (Cl: 8.3% 17.6%)
 - Al with prior: 22.7% (CI: 19.2% 27%)

• AUCPR: +4.5% (CI: 3.2% - 5.9%)

- Al w/o prior: 79.7% (CI: 76.5% 82.7%)
- Al with prior: 84.2% (CI: 81.8% 86.7%)

Discussion

- **Specificity** of temporal AI is **higher** than standard AI:
 - 20% of cancer-positive cases found by temporal AI without creating a single FP (twice as much as standard AI)
 - Prior information appears beneficial to AI as it is to humans
 - Yet, more work needed on AI (e.g., understand the pace of change)
- Possible use-cases:
 - Identifying (a portion of) high-risk patients before leaving the facility (immediate recall)
 - Prioritizing patients from Covid backlog for screening
- Limitations / extension of the present study:
 - More cases needed (screening distribution)
 - Does it apply to DBT as well?
 - Validate prospectively the benefits of a temporal AI

Key Points

- •Temporal AI produces less FP than standard AI
- •20% of cancer-positive cases may be found by temporal AI without creating a single FP
- Possible use-cases: immediate recall and Covid backlog prioritization.

